

DynacellTM

Bringing a dynamic dimension to force measurement

11010101111011

(2)

Dynacell - bringing a dynamic dimension to force measurement

During tests carried out on servohydraulic machines, elements of the system are subject to acceleration. As a result, in addition to the force applied to the specimen, the load cell also reads forces resulting from its own movement and the mass of the grips and fixtures attached to it.

ema dynacell

The ASTM E4-96 standard states, "CAUTION:

Practice E4 verification values are not assumed to be valid for high-speed or dynamic testing applications (see Practice E467)". Most fatigue rated load cells are actually designed for static load measurement, and are calibrated statically to ISO or ASTM standards. Dynacell is the world's first truly dynamic load cell, designed from the outset for measuring dynamic loads.

Dynacell introduces the following advantages:

- Reduces dynamic load errors which can be a significant percentage of reading
- Increases productivity by allowing higher frequency operation while maintaining test validity - improvements such as doubling the frequency are common

- Provides an improved closed loop load control for higher frequency testing
- Allows automatic set-up (when used with Instron FastTrack 8800 electronics), therefore reducing operator errors and improving system integrity

Figure 1 shows the difference between the load applied to the specimen and that read by the measuring device, such that

Where :

 F_{cell} - is the force seen at the load cell $F_{specimen}$ - is the force seen at the specimen m - is the mass of the grip or fixture a - is the acceleration of the grip or fixture

Consequently :

$$\mathbf{F}_{\text{cell}} \neq \mathbf{F}_{\text{specimen}}$$

Figure 2 Forces experienced by 100kN (22kip) load cell with 100kN (22kip) grips subject to an amplitude of 1mm (0.04in).

◀ Figure 1

Relationship between the force measured at the load cell and that experienced at the specimen. (3)

The scale of the error caused depends on the specific configuration of grips and fixtures, as well as the dynamic displacement of the load cell and the square of the frequency. Figure 2 shows an example of this, where the load cell is mounted at the end of a 100kN (22kip) actuator with a typical set of 100kN (22kip) hydraulic grips. While the

most dramatic example of this error is highlighted by such a configuration, the error also arises when the actuator is in the base of the machine and the load cell is mounted on the crosshead, as shown in Figure 3. Round robin tests by ASTM suggest that many systems give errors in excess of 1% at frequencies above 20Hz.

Figure 3 The effect of having the actuator mounted in the base and the load cell on the crosshead.

A smarter load cell for dynamic applications

The old solution

To counteract this problem one approach adopted has been to place an accelerometer as close as possible to the load axis, condition the accelerometer signal with special electronics, and then adjust the load signal accordingly. This has several disadvantages:

- Errors result from the accelerometer being off the load axis. This is due to both amplitude and phase differences between that seen by the specimen and that seen by the accelerometer. An example of this is shown in Figure 4
- Manual set-up is time consuming, particularly when grips and fixtures are changed
- Manual set-up is prone to operator error

eve dynasel

VAVAVAVA

Instron's Dynacell solution

With the Dynacell solution the error is minimized. You will see in Figure 5, that the accelerometer in a Dynacell is right at the heart of the load cell, directly on the load axis. This removes the risk of errors in the acceleration reading resulting from off center loading. In comparison to the old solution, this has the following advantages:

- The accelerometer is on the load line eliminating both amplitude and phase errors (a comparison is shown in Figure 6)
- Automatic set-up takes less than one minute
- Set-up is consistent and reliable between operators

The conditioning of the acceleration signal from the Dynacell is handled as standard in the FastTrack 8800 electronics, and is set-up automatically when the system is autotuned. This means that time is saved and operator errors reduced. For users who wish to do this themselves, they have the option to switch this feature on or off and set the correction factor manually.

The resulting signal is then subtracted from the load cell signal. That is:

$$F_{cell} = F_{specimen} + ma - ka_c$$

Where :

 ${\bf k}$ - is the correction factor ${\bf a}_{\rm c}$ - is the signal from the accelerometer.

The result is that :

 $F_{cell} = F_{specimen}$

Figure 5 The Dynacell with the accelerometer on the load axis.

Specifications

Resistance to thermal gradientsBetter than
$\pm 0.002\%$ of load cell rating
per °C temperature difference
across the load cell, lateral or axial
Zero stabilityBetter than $\pm 0.001\%$ of load cell
rating per hour. After short
term stability achieved
(isothermal test conditions)
Offset loadingError due to offset
static loading per 10mm radial
offset less than $\pm 0.5\%$ of reading

Linearity (for static applications)Better than $\pm 0.25\%$ of reading from 1% to 100% of load cell rating Linearity (for dynamic applications)Error due to inertia force of attached mass reduced by at least 85% over 0 to 200Hz or, worst case, to a value of 0.5% of load cell rating, whichever is greater Repeatability.....Better than $\pm 0.25\%$ of reading from 1% to 100% of load cell rating Hysteresis.....Less than $\pm 0.1\%$ of full scale CreepLess than $\pm 0.1\%$ of reading over 3 minutes minus 5 seconds at 20°C Zero error (residual indicated force)Less than $\pm 0.5\%$ of load cell rating after removing a series of forces Load reversal zero shiftLess than $\pm 0.5\%$ of load cell rating (tension to compression) Sensitivity1.6 to 2.4mV/V Zero balanceBetter than 2% of load cell rating Bridge resistance700 ohms -5%, +15% Insulation resistanceGreater than 5000 Mohms at 50V dc Excitation......5V RMS at 5kHz Deflection0.02mm at full load Compensated temperature range......0 to $+50^{\circ}$ C Storage temperature range.....-20 to $+60^{\circ}$ C Temperature effect on zero $\ ..Less \ than \ \pm 0.002\% \ of$ load cell rating per °C Temperature effect on sensitivityLess than $\pm 0.002\%$ of load cell rating per °C

6

All Instron 2527 Series Dynacell dynamic load cells, when used with FastTrack 8800 Series, will meet the requirements of ISO 75001/1 Class 0.5, ASTM E4, EN10002 Part 2, JIS (B7721, B7733) and ISO 10002 Part 2.

	2527-100	2527-101	2527-102	2527-103	2527-111	2527-113	2527-120	2527-125	2527-140
Construction	Shear cell	Sandwich	Sandwich	Sandwich					
Capacity kN	50	25	10	5	100	250	1000	500	2500
Кір	11	5	2	1	22	55	220	110	550
Interface central thread	M30 X 2	M20 X 1.5	M20 X 1.5	M20 X 1.5	M30 X 2	M48 X 2	M100 X 4	M72 X 3	M150 X 4
Interface bolt patterns	NA	NA	NA	NA	NA	NA	12 X M30 on 225 PCD and 6 X M20 on 150 PCD	6 X M30 on 225 PCD and 6 X M20 on 150 PCD	NA
Side load resistance	40%	40%	40%	40%	40%	40%	200%	200%	200%

All Dynacells have an overload capability of 300% of capacity before mechanical failure All Dynacells have a fatigue life in excess of 10^9 full stress reversed cycles

> As you might expect from Instron, Dynacell is also a highly accurate static load cell, with a measurement accuracy better than 0.25% of reading down to 1% of the load cell full scale. When used with FastTrack 8800, an accuracy of better than 0.5% of reading down to 1% of the load cell full scale is easily achieved.

Inside of the Dynacell showing the integral accelerometer.

For information on Instron products and services,

call any of the following worldwide sales and technical support offices.

USA			EUROPE					
California			United Kingdon	1				
Los Angeles	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	High Wycombe	Tel: +44 (1494) 464646	Fax: +44 (1494) 456123			
San Francisco	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Benelux					
Santa Barbara	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Edegem	Tel: +32 (3) 454 0304	Fax: +32 (3) 454 1244			
Georgia			France		- (-)			
Atlanta	Tel: +1 (800) 564 83/8	Fax: $+1(/81)5/55/25$	Guvancourt/Paris	Tel·+ 33 (1) 30 57 23 53	Fax: +33(1)30646711			
	$T_{51} + 1 (000) E64 0270$	$E_{0X} + 1$ (701) 575 5705	Cormony Austr		1ax. + JJ (1) J0 01 0/ 11			
Massachusett	101. ±1 (000) 304 03/0	$rax. \pm 1(/01)(0/00)(2)$	Germany, Austr		$E_{ave} = \frac{1}{40} (621) 6007 122$			
Roston	5 Tel: ± 1 (800) 564 8378	Fax: ± 1 (781) 575 5725	Ludwigshaleh	1012 + 49(021)(0907)	rax: +49 (021) 090/ 125			
Maryland	101. 1 1 (000) 501 05/0	1ax. + 1 (/01))/) / 2)	Italy					
Pasadena	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Milan	Tel: +39 (2) 3800 0003	Fax: +39 (2) 308 6988			
Michigan	1011 1 (000) 901 03/0	1444 1 (101) (1) (12)	Spain and Portugal					
Detroit	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Barcelona	Tel: +34 (93) 592 0503	Fax: +34 (93) 592 0760			
Minnesota	· · · -		Sweden, Norway and Finland					
Minneapolis	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Stockholm	Tel: +46 (8) 640 2278	Fax: +46 (8) 640 4602			
New York					~ /			
New York	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	ASIA					
North Carolina	1							
Charlotte	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	China					
Ohio			Beijing	Tel: +86 (10) 6849 8103/2	2 Fax: +86 (10) 6849 8103			
Akron	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Shanghai	Tel: +86 (21) 6215 8567/8	3 Fax: +86 (21) 6215 0261			
Dayton	Tel: +1 (800) 564 8378	Fax: +1 (781) 575 5725	Janan					
	TIL 1 (000) 5(/ 0070		Tokyo	Tel: +81 (44) 853 8520	Fax: +81 (44) 861 0411			
Dallas	1el: +1 (800) 564 83/8	Fax: $+1(/81)5/55/25$	Osaka	Tel: $+81$ (6) 380 0306	Fax: $+81$ (6) 337 2390			
			Nagova	Tel: +81 (52) 201 4541	Fax: $+81$ (52) 201 4542			
SUUTH AMER	ICA		Korea					
Argontino			Socul	$T_{\rm b}$ 00 (0) 550 0211/5	$E_{0.01} + 0.02 (2) = 5.2 0.100$			
Buonos Airos	Tab. $\pm 5/(1) 552 5120$	$F_{av:} \perp 5/(1) 555 2221$	Singanoro	$101. \pm 02 (2) 332 2311/3$	$rax. \pm 02(2) 333 9100$			
Duenos Aires	(COASIN)	$rax. \pm 94(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($	Sillyapore	Tal. 1 65 77/ 2100	Ease 1 65 77/ 1027			
D	(COADIN)			Iei. ±0) //4 j100	rax. +0) //4 103/			
Brazil	Tal. 1 CC (11) (00 C20)	Eart 55 (11) (00 520(laiwan					
Sao Paulo	lei: +55 (11) 420 5324	Fax: +55 (11) 420 5320	Hsinchu	Tel: +886 (35) 722 155/6	Fax: +886 (35) 723 746			
CANADA			AUSTRALIA					
Toronto	Tel: +1 (905) 333 9123	Fax: +1 (905) 639 8683	Victoria	Tel: +61 (3) 9720 3477/8	Fax: +61 (3) 9720 3728			
	+1 (800) 461 9123		Pymble NSW	Tel: $+61$ (2) 9983 9912	Fax: $+61(2)94499069$			
			/					

Instron and FastTrack are trademarks of Instron Corporation. Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation. Windows NT is a U.S. trademark of Microsoft Corporation. LabVIEW and HS488 are trademarks of National Instruments.

